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Abstract

Presented here is a new derivation of shear correction factors for isotropic beams by matching the exact
shear stress resultants and shear strain energy with those of the equivalent first-order shear deformation
theory. Moreover, a new method of deriving in-plane and shear warping functions from available elasticity
solutions is shown. The derived exact warping functions can be used to check the accuracy of a two-
dimensional sectional finite-clement analysis of central solutions. The physical meaning of a shear correction
factor is shown to be the ratio of the geometric average to the energy average of the transverse shear strain
on a cross section. Examples are shown for circular and rectangular cross sections, and the obtained shear
correction factors are compared with those of Cowper (1966). The energy-averaged shear representative is
also used to derive Timoshenko’s beam theory. © 1998 Elsevier Science Ltd. All rights reserved.

1. Introduction

The cross section of a beam may undergo in-plane warping due to extension and bending
deformation and out-of-plane warping due to torsion and shear deformation. Moreover, if the
beam is anisotropic, in-plane and out-of-plane warping may couple. Then extension can introduce
out-of-plane warping and torsion and shear can introduce in-plane warping. Since warpings are
small displacements relative to the rigidly translated and rotated cross section, inertia terms due
to warpings are relatively small and can be neglected. However, since warpings offer extra degrees
of freedom in which the cross section can deform, they influence the structural stiffness and need
to be accounted for.

In the literature, transverse normal stresses ¢,, and o4; and in-plane shear stress o,; are usually
assumed to be zero in the constitutive equations to account for in-plane warpings and their
influence on the material stiffnesses. The torsional rigidity of a beam with a non-circular cross
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section is usually modified to account for out-of-plane warping due to torsion (see, e.g., Timo-
shenko and Goodier, 1970). To account for out-of-plane warping due to shear, shear correction
factors are used with the first-order shear deformation theory. The deformed cross section is still
assumed to be flat and perpendicular to the deformed reference line after the effects of the in-plane
warpings and the out-of-plane warping due to torsion are accounted for. On the other hand, the
first-order shear deformation theory assumes that the deformed cross section is still flat, but not
perpendicular to the deformed reference line. However, the physical meaning of the shear correction
factor and the representative shear rotation angle are not well defined in the literature.

Shear effects are significant for thick, sandwich, and built-up beams. Shear effects are also
important even for thin laminated composite beams since the ratios of the Young’s moduli to the
shear moduli are between 20 and 50 in modern composites and between 2.5 and 3.0 in isotropic
materials. For plates and shells, there are several shear deformation theories, such as the first-
order, third-order (Reddy and Liu, 1985), and layer-wise higher-order theories (Pai et al., 1993 ;
Pai, 1995). All of these shear warping functions are functions of the thickness coordinate only.
However, for beams, because shear warping functions are affected by in-plane warpings, especially
if the cross section is not rectangular, they are functions of the two coordinates on the cross
section. Hence, shear warping functions for two-dimensional structures are not appropriate for
beams.

In the first-order shear deformation theory, only linear functions of the two in-plane coordinates
are involved in the displacement field and hence exact structural matrices in finite-element analyses
can be obtained without using direct numerical integrations, and only C° continuity is required for
the shear variables if the influence of shear deformation on the axial strain is neglected. Since these
advantages are very useful in simplifying the development of a large-scale finite-element code, it is
worthwhile to derive shear correction factors that can account for shear effects accurately.
However, the following questions arise. How can shear warping functions be derived or calculated?
What is the actual physical meaning of the shear representative? Is a shear representative the
geometric average or the energy average of the shear strain on a cross section? Is there a way to
obtain the shear correction factor without first solving a beam problem with specific boundary
and loading conditions?

In the literature, several approaches have been proposed for obtaining the shear correction
factor. Most of these approaches are based on matching certain gross responses predicted by the
first-order theory with those obtained from the three-dimensional elasticity theory. Gross responses
used for matching include the transverse shear strain energy, the propagation velocity of a flexural
wave, the natural frequency of the thickness shear vibration mode, and others (Yang et al., 1966 ;
Chow, 1971 ; Dong and Tso, 1972 ; Whitney, 1973 ; Bert, 1983). All these methods require solving
the elasticity equilibrium equations with specified boundary and loading conditions, which is
difficult for practical use.

In this paper, we present a method of deriving analytical shear warping functions of isotropic
beams by using available elasticity solutions for stress distributions. We also present a new method
of deriving accurate shear correction factors for isotropic beams by matching the exact shear stress
resultants and shear strain energy with those of the equivalent first-order shear deformation theory.
This is done without solving the elasticity equilibrium equations with specified boundary and
loading conditions. Examples are shown for circular and rectangular cross sections, and the new
shear correction factors are compared with those of Cowper (1966).
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2. Warping functions

Here we show how to derive the shear warping and coupling functions of prismatic isotropic
beams from the elasticity solutions of stress distributions. For an initially straight beam undergoing
deformations in three-dimensional space (see Fig. 1), the displacement field can be represented as
(Pai and Nayfeh, 1994)

u(x,p,z,t) = u(x, 1) +z0,(x, 1) —y0;5(x, )
+p1(x, 0911 (0, 2) +75(x, 09153, 2) + 76 (x, Dg16(1, 2)
uy (x, p,2, 1) = v(x, 1) =20, (x, 1) + p2 (X, 1)g22 (1, 2) + p3 (X, )23 (¥, 2) +e(x, 1)g24(, 2)
us (x, ,2, 1) = wx, 1) + 30, (x, ) + po(x, 0932 (3, 2) + p3 (x, )g33 (1, 2) +e(x, 1)g34 (1, 2) (1)

where u,, u, and u; are the displacement of an arbitrary point on the observed cross section along
the axes, x, y and z, respectively, and ¢ is time. Moreover, u, v and w are the displacements of the
area centroid of the observed cross section ; 0,, 0, and 05 are the rotation angles of the cross section ;
and p,, p, and p; are the curvatures with respect to the axes x, y and z, respectively. e is the
extensional strain of the centroidal line. ys and y, are the shear rotation angles at the area centroid
with respect to the axes y and —z, respectively. g, is the torsional warping function; g,s and g,
are shear warping functions; ¢,,, ¢»3, g3, and g; are bending-induced in-plane warping functions ;
and ¢,, and g5, are extension-induced in-plane warping functions.

Using &; = 0u;/0x; and ¢; = 0u;/0x;+ 0u,/0x; (x, = X, X, = y, and x; = z), engineering strains ¢;
are obtained as

e

Fig. 1. Coordinate system and displacements for an initially straight beam (xyz is a rectangular frame with the x axis
along the beam centroidal line).
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e =e+zpy—yp3+p1gn +75915 76916 (2)
€2 = P2922, T P3923, €G24, 3)
€33 = P2932: T P3933: T €G34: “4)
€12 = P1(g11,—2)+ V5915, F+V6G16y T P2922 +P3923 +€'Gas ©)
€3 = P1(G11-FY)+75915: FV6G16: T 02932+ P393+ €G34 (6)
€23 = P2(922: F932,) +p3(923-+G13,) +€(924: +g34y) (7

where () =0()/0x,e=u', 0, = —w', 0, =0, p, =01, p, = 05, and p; = 05
2.1. In-plane warping functions

To show the method of obtaining analytical in-plane warping functions, we consider isotropic
beams with a cross section symmetric with respect to the axes y and z. We also assume that all
loads are applied at the ends and hence p) =95 = y5 = ¢ = 0. Using the assumption that

0., = 033 = 0,3 = 0 in the constitutive equation of isotropic materials yields o,, = E¢,;, &5, = —vé,y,

€33 = —veyy, and &,; = 0. Here ¢;; denote engineering stresses, £ is Young’s modulus, and v is

Poisson’s ratio. Using these results and eqns (2)—(4) and (7), we obtain
Pz(gzzy‘f“’z)+P3(gz3y_VJ’)+e(gz4y+V) =0 ®)
P2(g32: +v2) +p3(g33.—Vvy) +e(gz4.+v) =0 )
P2(g22-+932,) +03(923. +933,) + (g4 +734,) =0 (10)

Since p,, p; and e are independent of each other, setting their coefficients in eqns (8)—(10) to zero
yields

G2y +vz2 =0, gs5.+vz=0, gy.+g3, =0 (I1a,b,c)
gZSy_vy = 0) Y3z — V)Y = 07 923z+933y =0 (12a,b,c)
Gy +v =0, g3..+v=0, gr4.+g34, =0 (13a,b,c)

Moreover, because the cross section is symmetric with respect to both the y and z axes, we have

932(0,2) = g32(=2,2), 923(1,2) = g23(y, —2), G34(1,2) = g34(—,2) (14a,b,c)

Integrating eqns (11)—(13) and using eqns (14a,b,c,), we obtain the in-plane warping functions as
Yoo = —VVZ, Y23 = %V(y2—22)s Goa = —VY
932 = %v(yz_zz)’ 933 =VVZ, G3z4 = —VZ (15)
2.2. Shear warping functions

To show the method of deriving shear warping functions, we consider a prismatic isotropic
beam with the reference axis x representing the line through the area centroids of the beam. To
avoid complications arising from bending-torsion coupling, we assume that the cross section and
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applied static end loads are symmetric with respect to the x—z plane and hence, the x—z plane is
the plane of deflection and

v=9s=p3;=0,=p =0 (16a)
External loads are assumed to be at the ends only, and hence,
5 =¢ =0 (16b)

Substituting eqns (16a,b) into eqns (2), (5) and (6) yields
g1 =e+zpy, €12 =7VsGis,TP2922, €13 = Vsgis-+ P29 (17a,b,c)

The exact distribution of transverse shear stresses in a uniformly loaded beam is the same as in a
tip-loaded cantilever and is given by (Love, 1944 ; Muskhelishvili, 1963)

B F; oy 1 , 1 5
013 = _2(1+v)122 <8z+2v2 +2(2—v)y (18)
S & W (- (19)
2(14+v)1,, \ 0y

where y%(y,z) is a harmonic function determined by the shape of the cross section and
L, = sz dy dz. Moreover, Fj is the shear stress resultant, which is equal to the end load in the tip-
loaded case and varies linearly in a uniformly-loaded case. Since eqns (18) and (19) are exact in
the cases of constant and linearly varying Fj, it is expected that eqns (18) and (19) are valid if F;
does not vary too rapidly along the length of the beam.

2.2.1. Circular cross sections
For a circular cross section with a radius a, the function y is (Love, 1944)

%= —33+2na’z+4(z* —32)?) (20)

Substituting eqn (20) into eqns (18) and (19) yields

_FRG+2y 12y
T T84, \ Y T T 31 ” 1)
F;(142v)
Since o3],_._y = G5 (G is the shear modulus), it follows from eqn (21) that
F;(3+2v)
O = 51+, “ (23)

It follows from eqn (17a) that the bending moment M, = [o,,zdydz = [Ee,;zdydz = Elp,.
Moreover, M, = — Fy(L—x) (L is the beam length) and F; = F; for a cantilever subjected to an
end force F;, and M, = —q(L—x)?*/2 and F; = g(L—x) for a cantilever subjected to a constant
distributed load ¢. Hence, we obtain that
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M, F
~ EL, Ely

’

P2

24

Substituting eqn (24) into eqn (17¢) and using the relations o,; = Gé¢;; and £ = 2G(14v) and eqns
(21) and (23) yields

m <a2 - ;é:yz) B 8F<31(3+t>212 « < e f;v)azg”) @)
It follows from eqns (25) and (15) that
2 Z2
== 73 +y2v)a2 1= (3+3 2W)a? (26)
and, hence
yiz z? _
9=~ Ghome T Grana YW @7)

Similarly, substituting eqn (24) into eqn (17b) and using the constitutive equation ¢,, = G¢,, and
eqns (22) and (23) yields

F;(1+42v) Fy(3+2v) N 4 28)
— z = a 4+
41+, T8+ 9T e
It follows from eqns (28) and (15) that
g (29)
= - — z
gis B+2v)a® g

It follows from eqns (27) and (29) that f(y) = 0 and ¢(z) = z—2°/(3+2v)a*. Hence, the shear
warping function g, is given by

y'z N z? 30)
= — z—
gis (3+2v)a? (B3+2v)a?
It follows from eqns (17b), (17¢), (24), (23), and (15) that
’ 2
05 z 1-2v
&3 = , =¢is.+ —gpp=1—————"— 31
13 = 93sVs,  gszs = YGis Ve 932 e (3+2v)a2y (31
Pa 2(142v)
&1y = R = o = =)z 32
12 = Y25Vs, Y25 = Y15 v 922 (3+2V)a2y (32)

The shear strain functions g;s and g,; can be directly obtained from eqns (21) and (22) by using
the relations g5 = 0,5/Gys and g,s = 0,,/Gys. If the beam is subjected to shear loads along both y
and z directions,

€13 = 935Ys5 TY36Y6s €12 = YJ26V6 T Y2575 (33)



P.F. Pai, M.J. Schulz|International Journal of Solids and Structures 36 (1999) 1523—1540 1529

where the shear strain functions g,, and g5, can be obtained by considering end loads along the y
axis and are given by

y? 1—2v 2(1+2v)

T Grwma 69

=]l-=———z,
Y26 2 G+m)d Y3s

2.2.2. Rectangular cross sections
For beams having rectangular cross sections (see Fig. 1), the function y is given by (Love, 1944)

(—1)'si h2nnz
—1)"sinh——
I+v , v 24v ,. b & b 2nmy
Y = (— ;O 12b >z+ ) (2> =3zy )-1-2 3,;1 ) oS (35)
n’ cosh——
b
Substituting eqn (35) into eqns (18) and (19) yields
2nnz
—1)"cosh
B S PN Co WU U R A B
75 T 50+, MNa 77 ) 2™ "2 Aa | na b )
n” cosh——
2nnz
—1)"sinh
F,vb? . (—1)"sin b . 2nmy
G5 :21 [ o sin b (37)
(I +v)hn =) w2 cosh ¢
b
Since 03|,-._o = Gys, we obtain from eqn (36) that
_ F; 1 , 1 v e (=)
Gys = Y H,, H, :4(1+v)a — 12vb - ”; 2 o (38)
n coshT

Using the relations ¢g;5s = 0,5/Gys and ¢g,s = 7,,/GYs, we obtain the shear strain functions g5 and g,s
as

1) cosh 272
b - a )\ v p? vbh? & (=1)"cos b 2nmy 19
g35 - H3 ( V) 4 z 12 vy 7'[2 = s nra Ccos b ( )
n° cosh—
b
2nnz
—1)"sinh
Vb2 i( ) sSin b . 2}’17‘[y (40)
= in
9as H37T2 n=1 2 nra ° b
n coshT

Similarly, one can obtain the shear strain function g,, and g5, as
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2
(=" cosh?

_ (1+ ) i 2 ﬁ—i— 2 E N 2nnz (41)
Y26 = g g Y 12 ol B nh O g
n° cosh—
a
) (—1)"sinh a4
va i a Sin2n7rz 42)
g [
i H,m* /=y, osh@ a
where
1 va> & (—=1)"
H, = (1 o vt — Y — 4
2 = (b= et =5 ), . b “43)
n coshj

3. Shear correction factors

For isotropic beams the shear stress—strain relation is

o G 0 +
{ 13}: |: }{9357)5 g36V6} (44)
012 0 G| (92676 1+9257s
To derive shear correction factors, we consider the form of eqn (44) and assume that the shear
stress resultants F, and F; of an equivalent first-order shear deformation theory have the form

Fy|  [kiGA lgGA} Ts+c17s 45)
F, ksGA ky,GA] (76 +¢27s
where A is the cross section area; k|, k, and k; are shear correction factors; J5 and J, are energy-
averaged representatives of ys and ), respectively ; k5 is used to account for any possible coupling
of shear energies; ¢, accounts for the shear coupling effect of y; on F;; and ¢, accounts for the
shear coupling effect of y5; on F,. Hence, there are seven unknowns (i.e., k, k», ks, 75, J6, €1, ¢2) tO
be determined by matching the shear stress resultants F, and F; and shear strain energy E, of the

exact shear theory with those of the equivalent first-order shear theory.
It follows from eqn (44) that

F3:J013dde:C11V5 (46)
4

Fz:J o,dydz = Cyy7 (47)
A
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2E, = J (013815 +0'12812)dyd2 = V§C31 +27675Cs» +V%C33 (48)
A
where
J gse dydz = J grsdydz =10 (49a)
A A

C, = GJ gysdydz, Cy = Gf
A

A

grsdydz, Cy = Gf (ggs +g§5)dy dz
A

Cy, = GJV (925926 +935936) dydz, Cs3 = GJ (g%o +g§6) dyd:z (49Db)
4

A

Equation (49a) is due to the fact that [, 0d4 = 0 when the external load F, and hence, y; are zero.
Similarly, fA g;3d4 = 0 when F; and 75 are zero.
It follows from eqn (45) that

Fy = (k4 k3)GAJs+ (ks + ¢,k )GAT, (50)
Fy = (ky+c1k3)GAJs+ (ks + c2k,)GATs (51)
2E, = Fy(Js+c¢7¢) + F> (F6 + 2 75)
= 73GA(k, + 2k, +kyc3) +2767sGAlk ¢y +ks(1+ ¢, ¢5) +ksc,]
+7eGA (ks +2ksc, +k,c?) (52)

Setting the term which contains y5(y,) in eqn (46) equal to the term which contains 75(J,) in eqn
(50) yields

(ki +crks)GA7s = Cyyys (53)

(ksy+c k)GA7s =0 (54)
Similarly, it follows from eqns (47) and (51) that

(ky+c1k3)GATs = Cyyp6 (55)

(ky+cyky)GA7s =0 (56)
Also, we obtain from eqns (48) and (52) that

73GA(k, +2kyc, +koc3) = Cyy93 (57)

767sGAlk c; +ks(14c cy)+kyer] = Ciape7s (58)

FeGA(ky +2ksc, +kici) = Cisve (59)
Substituting eqns (53) and (56) into eqn (58) yields

76¢1C11 = Ciy7 (60)

Substituting eqns (54) and (55) into eqn (59) yields
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76Ca1 = Ci3376 (61)
Substituting eqns (53) and (56) into eqn (57) yields
7sCii = Cy17s (62)
Substituting eqns (54) and (55) into eqn (58) yields
75¢2Ch = Csyys (63)
It follows from eqns (60)—(63) that
C21 C32
) = 64
aen 9
Cs,Chy
cy = 65
* T 00y ©
Moreover, it follows from eqns (62) and (61) that
7s  Ch
s _ 66
775 C3 1 ( )
76  Co
fe 21 67
776 C33 ( )

Using eqns (53), (54), (66), and (67), we obtain the shear correction factors as

2
11

k, = 68
' GAC,, (1—¢,¢y) (68)
2
—a Ly
ky = 69
T GAC, (1—ci6,) (69)
We also obtain from eqns (55), (56), (66), and (67) that
C3
k, = 70
* T GAC(1—c10) 70
e C2
k, C 05 71)

T GAC, (1—cycy)

It can be proved that the k5 in eqn (69) is equal to that in eqn (71) by using eqns (64) and (65). It
can be seen from eqns (51) and (56) that F, = 0 if j; = 0. However, eqn (45) shows that, when
¥s = 0, F, can be zero only if k; is nontrivial when both &, and ¢, are nontrivial.

Substituting eqns (54) and (56) into eqn (45) yields

F, k,GA 0 s
et raalln) @
F, 0 k,GA| |7

where
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El = ki + ks, Ez =k, +ck; (73)
Substituting eqns (68)—(71) into eqn (73) yields
- Chi C3
= = 4
ki GAC;,’ & GAC;, (74)

The geometric averages of the shear angles are defined as j; = j 4813dA/A and §¢ = j 46,dA/A. Tt
follows from eqns (33), (49a,b), (66), (67), and (74) that

~ _CIIVS
Vs = GA

Hence, eqn (72) can be rewritten as
F GA 0 (7
3 Vs (75b)
F, 0 GA] |7
Moreover, if F, = 0 and hence 7, = 0, it follows from eqn (52) that
2E, = F3js = GAJsTs # GAJs7s # GAJsTs (76)

= El?S: T6 = = Ez?s (75a)

Equation (76) shows that 75 represents the energy average of 5. Moreover, eqn (75a) shows that
the shear correction factor k, represents the ratio of the geometric average to the energy average
of &3.

The influence of shear warpings on the axial strain ¢, is not included in the matching of strain
energies. However, if F, and F; are constant, then y5 = y; = 0 and the shear strain energy is
decoupled from the axial strain energy. Also, we note that kinetic energy is not considered in the
matching. Since kinetic energy is a function of u, v, and w as well as s and y,, the system responses
would need to be obtained before the kinetic energies can be matched. This is generally not
practical and the results are problem dependent. However, since the kinetic energy due to shear
warping is relatively small, using the shear correcting factors obtained by matching only the shear
strain energy should not significantly reduce accuracy. The warping-restraint effect can affect the
shear warping functions at the ends of a beam if the load distributions on the ends are not the
same as those of St Venant’s solutions (Iesan, 1987). However, the warping restraint effect is not
significant for isotropic beams and is neglected here.

Because shear stress resultants and energy are matched, the corresponding first-order shear
theory is energy-consistent. To use this energy-consistent first-order shear theory in solving struc-
tural problems, one needs to defined coupled energy-averaged shear rotation angles 75 and 9§ [see

eqn (45)]

Ts =7s+ciTs, o = Tot+C2Ts (77a)
Then, the equivalent displacement field for flexural problems is

Uy = —wWz+7sz—=0y+9:y, Uy =0, Uz =w (77b)

Using eqns (77a) and (77b) to derive the first-order shear-deformable beam theory and then solving
the governing equations with specified boundary and loading conditions, one can obtain the
solutions of v, w, Js and 7,. After the values of 75 and 7, are obtained, one can use eqns (66) and
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(67) to obtain ys; and y,, and then eqns (33) and (44) to obtain the transverse shear strains
and stresses. After the system responses are obtained by using the equivalent first-order shear
deformation theory, if greater accuracy is required, post-processing techniques (Whitney, 1987 ;
Noor and Burton, 1989) can improve the solution by solving the three-dimensional elasticity
equations.

4. Energy-consistent formulation
4.1. Planar flexural vibrations

We assume that the cross section and applied dynamic loads are symmetric with respect to the
x—y plane and that the axis z is a principal axis. Hence, because of the loading condition,
F, =y =79 = 0. To derive the equations of motion, we consider eqns (77a,b) and rewrite the
displacement field as

U = _ZW/+Z')753 Uy =W, Uy = O (78)
The strain—displacement relations are
ou, L ou, Ouz
e == —zwW'+z5, e3=—+ =75, €,=0 (79)
Oox 0z Ox

To derive the equations of motion, we use the extended Hamilton principle, which states

0= J (3T — SV + W, +5W,) dt (80)

0

where T is the kinetic energy, V' is the elastic energy, 6 W, is the variation of nonconservative
energy due to external loads and damping, and 6 W, is the variation of work due to forced applied
at the boundary or due to motion of the boundary. Since 6 W, is problem dependent, it will not be
considered in the derivation. Using the assumptions ¢,, = 053 = 0,3 = 0, we obtain that

L
ow,. = j q;owdx (81a)
0
L
5V:J J‘(0115811+O’125812+O’135813)d14dx (81b)
0 J4
L X3
oT = —J f pD-oDdAdx (81c)
0 JA4

where ¢; is the external distributed load, p is the mass density, and D is the displacement vector
given by

D = wi, +uri, +usi, = (—zw' +275)i, + wi, (82)
It follows from eqns (81¢) and (82) that



P.F. Pai, M.J. Schulz|International Journal of Solids and Structures 36 (1999) 1523—1540 1535

L
oT = —J {Imw =/, (s — W) ]10w /o (s — W) 075} dx+7 (75 — ") owl§ (83)
0
where
m = J pdA, j, = J pz* dA (84)
A A

Substituting eqn (79) into eqn (81b), we obtain

L
oV = J [— M50w+ (Fy— M5)675] dx +[— M, ow" + M5ow+ M, 67516 (85)
0
where
M, = j 0112dA4 = EL, (75 —w") (86)
y

Substituting eqns (81a), (83), (85), (86), and (72) into eqn (80) and setting the coefficients of ow
and d75 to zero, we obtain the following equations of motion :

EL, (7Y —w") 4+ q5 = m+j, (s —Ww" (87a)

EL, (75 —w") =k GATs = o (75 — W) (87b)
The boundary conditions are to specify

woor —M5+j,(js—W); w orM,, 75 orM, (88)

at x = 0, L. In the literature, most authors use the total rotation angle , of the observed cross
section in the formulation of Timoshenko’s beam theory, which is defined as

Uy =7s—w (89)
Substituting eqn (87b) into eqn (87a) and using eqn (89) in eqns (87a,b), we obtain that

kK\GAW' +y5) + g5 = mw (90a)

EL S5 —k\GAW +,) = jai, (90b)

We note that eqns (90a,b) are the same as those of Timoshenko’s beam theory except that y,
represents the energy-averaged rotation angle and the shear correction factor k,; accounts for both
the shear stress resultant and energy. Because either eqns (87a) and (87b) or eqns (90a) and (90b)
are coupled equations, they need to be solved simultaneously. Moreover, although different
dependent variables are used (i.e., w vs s and w vs 1,), eqns (87a,b) and eqns (90a,b) describe the
same dynamic system, and their solutions are equivalent. Hence, these two formulations are
equivalent.
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4.2. Three-dimensional flexural vibrations

We consider a prismatic homogeneous isotropic beam with the reference axis x being the
centroidal line and the axis y and z being the principal axes. The displacement field is shown in
eqn (77b). The strain—displacement relations are obtained as

e = —z2W'+zs ="+ 75, €12 =T, €13 =75 1)
The virtual work due to external loads is
L
ow,. = j (2004 ¢q50w) dx (92)
0

where ¢, is the external distributed load along the y-direction, and g¢; is the external distributed
load along the z-direction, and the displacement vector is given by

D = ui, +url, +usi, =(—wz+Psz—v'y+7sp)i, +0vi, +wi, (93)
It follows from eqns (81¢) and (93) that

L
oT = _J (I +j> (5 — W) ]ow+ o (Fs — W)+ ¢2/3 (F6 — )] 675
(

)
+ M6+ 3 (Fo — )00+ s (o — ) + 1o (s — 1W)]076 ) dx
+ L2 (s — W)W+ (F6 — ) S0] 5 (%94)

where
m= J pdAd, j, = J pztdA, j; = J py* dA, J pyzdAd =0 95)
A A A A
Substituting eqn (91) into eqn (81b), we obtain

L
5V=J {—=M5ow+ M50v+ [F3 — M5+ ¢, (Fy + M5))07s + [Fo + M5+ ¢, (F; — M%)]676 } dx

0

+[—M,ow + M50w+ Myov' — Myov+ (M, — s M3)07s — (M —cy M>)d5s]s (96)

where
M, = J 0112dA = EL, (5 —w"), = —J o, ydA = ELI; (" —7%)
A A
122 == J’ 22 dA, 133 == J\ y2 dA (97)
A A

Substituting eqns (92), (94), and (96) into eqn (80), using eqn (97), and setting the coefficients of
ow, ov, 0ys, and 0}, to zero, we obtain the following equations of motion :

EL; (7§ —w")+q5 = mi+), (73/5 — W’ (98a)
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EIL5 (s _Uit) +q> = mi+J; (75/6 —1" (98b)
EL, (i —w")—k|GATs + ¢, EL; (5¢ — ") — 02k GATe = jo(F5s —W') + Caj3 (o — ) (98¢c)
EL; (75 —0v") —EzGA?ﬁ +o EL, (75 —w"” _Cllzl GAjs = Js (756 —0")+c i) (335 —W) (98d)

The boundary conditions are to specify
woor — M5+, (s =)
w or M,

v or M5+, (736 —1")

v or M,
Js or My, —c, M;
76 or Ms—c M, 99)

at x = 0, L. Subtracting ¢, x eqn (98d) from eqn (98c) and subtracting ¢, x eqn (98c) from eqn
(98d) yields

EL, (5 —w") — 151 GAys = )» (735 — W) (100a)
ELL; (5 —v") _EzGA?s =Js (’);;6 —1") (100Db)

We note that, when 5, = 0, eqn (98a) and eqn (100a) reduce to eqn (87a) and eqn (87b), respectively.
However, when both 75 and }, are nontrivial, ¢, and ¢, couple the equations governing motion in
the two planes.

5. Numerical results and discussion
5.1. Circular cross section

Substituting eqns (31), (32) and (34) into eqn (49b), we obtain

2(1+v) 28+ 56v+32v?
C,=0C,, =G4 , C3,=C3=GA— ———, C;, =0 101
11 21 342y 31 33 6(3+2v)° 32 (101)
where 4 = a*n. Substituting eqn (101) into eqns (64)—(67), (73), and (74) yields
Cl :C2 :k3 :0 (10221)
3(1 342
v T UEMGER) (102b)
Ts To  TH+14v48V°
_ _ 6(1 2
Ro=F =k, =k, d+v) (102¢)

T T4 14v+ 82
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The shear correction factor &, is the same as that of Cowper (1966) {kcowper = 6(1+V)/(7+6v)}

only if v = 0. If v = 0.3, kcowper 18 higher than k; by 4.2%. If v = 0.5, kcowper 15 higher than &, by
6.7%.

5.2. Rectangular cross section

Substituting eqns (39) and (40) into eqn (49b) we obtain

GAa*(1+v) GA (a*(1+v)* v*b* v?b° Z tanhnrma/b
Ch=0—"F—", Cin=0, C3y=—7 + -

H, 6 H? 30 180  27°a.= n’

(103)
where A = ab. Substituting eqn (103) into eqns (64)—(67) and (74) yields
_ a*(1+v)?
Cl :C2:k3:0, kl :kl = 4 5 514 275 - (104)
36 a*(1+v) n vh v?b> & tanhnna/b
30 180  27°a.= n’

It is well known in the analysis of isotropic plates that the shear strain functions are given by
(Shames and Dym, 1985)

472
93s = 1_?a grs =0 (105)

This is the so-called third-order shear deformation theory. Using eqn (105) we obtain

2GA 8GA 5

3 Cs, =15 ki =k, =5 (106)
If v=0and/or b/a ~ 0, it follows from eqn (104) that k, = 5/6. On the other hand, if v = 0 and/or
bja ~ 0, it follows from eqns (39) and (40) that g;s and g,s are the same as those in eqn (105). In
other words, neglecting Poisson’s effect (i.e., v = 0) and/or assuming b/a ~ 0 validates the third-
order shear theory. The shear correction factor k, in eqn (104) is the same as that of Cowper
(1966) {kcowper = 10(1+v)/(12+11v)} only if v = 0. However, kcoyper i independent of a/b, but
eqn (104) shows that k, is a function of /b and that k, decreases when a/b decreases. For materials
with v = 0.3, Table 1 shows the comparison. The reason for this is that, when a/b decreases and
the beam is subjected to F; only, o,, increases [see eqn (37)] due to Poisson’s effect and the
assumption that ¢, = 0. Hence, the energy averaged shear rotation angle 75 and 7s/3s (=1/k;)
increase. In fact, the shear correction factor of Cowper (1966) for elliptical cross sections also
shows this phenomenon. Note that the shear correction factor of a rectangular cross section should
be similar to that of an elliptical one when the aspect ratio a/b is very small. However, we point
out here that, when «/b is small, the assumption o,, = 0 is not valid and hence, the shear correction
factor [eqn (104)] and the shear stress functions [i.e., eqns (36) and (37)] are not appropriate
because they are derived using the assumption a,, = 0. Hence, if a/b is very small, it is better to
obtain k, by assuming ¢,, = g,s = 0. Table 1 shows that k,, , _,,. —o) is larger than that from eqn

Cll =
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Table 1
Shear correction factors for beams having rectangular cross
sections and v = 0.3

alb ky ST K cowper

10 5/6 5/6 0.84967
4 0.83331 0.83331 0.84967
2 0.83294 0.83298 0.84967
1 0.82822 0.82930 0.84967
0.5 0.78444 0.80676 0.84967
0.25 0.58370 0.74767 0.84967
0.1 0.17913 0.60987 0.84967

(104) and is less than K¢,y However, to obtain accurate results, one should treat beams with
very small a/b as plates.

5.3. Discussion

The shear correction factor defined in this paper is more rigorous than others in the literature
because both shear stress resultants and shear strain energy are conserved. The physical meaning
of shear correction factor is shown to be the ratio of the geometric average to the energy average
of shear strain [eqn (75a)], not the ratio of the geometric average of the shear strain to the shear
rotation angle at the centroid as explained in some of the literature. Moreover, if the geometric
average is used as the shear representative and only shear stress resultants are matched, the shear
correction factor should be one, as shown in eqn (75b). The present shear correction factor is
different from that of Cowper (1966) because the geometric average of the shear strain is used by
Cowper as the shear representative and eqn (81b) is not satisfied. In other words, the formulation
of Cowper (1966) is not energy-consistent.

A combination of the present method of deriving shear warping functions from elasticity
solutions and the new derivation of shear correction factor can be used to obtain energy-consistent
shear correction factors. Since the range of validity of the first-order shear theory is strongly
dependent on the shear correction factors used, the present shear correction factor can be used to
extend the validity of the first-order shear theory in analyzing thick beams. These shear correction
factors are useful in finite-element formulations to simplify the formulation but still accurately
account for shear effects.

For asymmetric cross sections or symmetric anisotropic cross sections, the in-plane warping
functions in eqn (15) are not valid. To obtain the warping functions and shear strain functions g¢,s,
a6 93s and g, of such complex cross sections, one needs to perform two-dimensional sectional
finite-element analyses (see, e.g., Giavotto et al., 1983) to obtain the shear stress distributions a5
and ¢, and then use the present method to obtain k, and k,. However, the presented exact warping
functions for circular and rectangular isotropic cross sections can be used to check the accuracy
of a two-dimensional sectional analysis code for analyzing general anisotropic beams.
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6. Closure

A method of deriving exact shear warping functions of isotropic beams from elasticity solutions
is shown in this paper. Moreover, a new derivation of shear correction factors is shown, in which
the shear stress resultants and shear strain energy are conserved. The new shear correction factor
is energy-consistent and its physical meaning is shown. The present shear correction factor is useful
in finite-element formulations to simplify the formulation but still accurately account for transverse
shear effects. The use of the energy-averaged shear representative in the derivation of Timoshenko’s
beam theory for planar and three-dimensional vibrations is also shown in detail.
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