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Abstract

Presented here is a new derivation of shear correction factors for isotropic beams by matching the exact
shear stress resultants and shear strain energy with those of the equivalent _rst!order shear deformation
theory[ Moreover\ a new method of deriving in!plane and shear warping functions from available elasticity
solutions is shown[ The derived exact warping functions can be used to check the accuracy of a two!
dimensional sectional _nite!element analysis of central solutions[ The physical meaning of a shear correction
factor is shown to be the ratio of the geometric average to the energy average of the transverse shear strain
on a cross section[ Examples are shown for circular and rectangular cross sections\ and the obtained shear
correction factors are compared with those of Cowper "0855#[ The energy!averaged shear representative is
also used to derive Timoshenko|s beam theory[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

The cross section of a beam may undergo in!plane warping due to extension and bending
deformation and out!of!plane warping due to torsion and shear deformation[ Moreover\ if the
beam is anisotropic\ in!plane and out!of!plane warping may couple[ Then extension can introduce
out!of!plane warping and torsion and shear can introduce in!plane warping[ Since warpings are
small displacements relative to the rigidly translated and rotated cross section\ inertia terms due
to warpings are relatively small and can be neglected[ However\ since warpings o}er extra degrees
of freedom in which the cross section can deform\ they in~uence the structural sti}ness and need
to be accounted for[

In the literature\ transverse normal stresses s11 and s22 and in!plane shear stress s12 are usually
assumed to be zero in the constitutive equations to account for in!plane warpings and their
in~uence on the material sti}nesses[ The torsional rigidity of a beam with a non!circular cross
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section is usually modi_ed to account for out!of!plane warping due to torsion "see\ e[g[\ Timo!
shenko and Goodier\ 0869#[ To account for out!of!plane warping due to shear\ shear correction
factors are used with the _rst!order shear deformation theory[ The deformed cross section is still
assumed to be ~at and perpendicular to the deformed reference line after the e}ects of the in!plane
warpings and the out!of!plane warping due to torsion are accounted for[ On the other hand\ the
_rst!order shear deformation theory assumes that the deformed cross section is still ~at\ but not
perpendicular to the deformed reference line[ However\ the physical meaning of the shear correction
factor and the representative shear rotation angle are not well de_ned in the literature[

Shear e}ects are signi_cant for thick\ sandwich\ and built!up beams[ Shear e}ects are also
important even for thin laminated composite beams since the ratios of the Young|s moduli to the
shear moduli are between 19 and 49 in modern composites and between 1[4 and 2[9 in isotropic
materials[ For plates and shells\ there are several shear deformation theories\ such as the _rst!
order\ third!order "Reddy and Liu\ 0874#\ and layer!wise higher!order theories "Pai et al[\ 0882 ^
Pai\ 0884#[ All of these shear warping functions are functions of the thickness coordinate only[
However\ for beams\ because shear warping functions are a}ected by in!plane warpings\ especially
if the cross section is not rectangular\ they are functions of the two coordinates on the cross
section[ Hence\ shear warping functions for two!dimensional structures are not appropriate for
beams[

In the _rst!order shear deformation theory\ only linear functions of the two in!plane coordinates
are involved in the displacement _eld and hence exact structural matrices in _nite!element analyses
can be obtained without using direct numerical integrations\ and only C9 continuity is required for
the shear variables if the in~uence of shear deformation on the axial strain is neglected[ Since these
advantages are very useful in simplifying the development of a large!scale _nite!element code\ it is
worthwhile to derive shear correction factors that can account for shear e}ects accurately[
However\ the following questions arise[ How can shear warping functions be derived or calculated<
What is the actual physical meaning of the shear representative< Is a shear representative the
geometric average or the energy average of the shear strain on a cross section< Is there a way to
obtain the shear correction factor without _rst solving a beam problem with speci_c boundary
and loading conditions<

In the literature\ several approaches have been proposed for obtaining the shear correction
factor[ Most of these approaches are based on matching certain gross responses predicted by the
_rst!order theory with those obtained from the three!dimensional elasticity theory[ Gross responses
used for matching include the transverse shear strain energy\ the propagation velocity of a ~exural
wave\ the natural frequency of the thickness shear vibration mode\ and others "Yang et al[\ 0855 ^
Chow\ 0860 ^ Dong and Tso\ 0861 ^ Whitney\ 0862 ^ Bert\ 0872#[ All these methods require solving
the elasticity equilibrium equations with speci_ed boundary and loading conditions\ which is
di.cult for practical use[

In this paper\ we present a method of deriving analytical shear warping functions of isotropic
beams by using available elasticity solutions for stress distributions[ We also present a new method
of deriving accurate shear correction factors for isotropic beams by matching the exact shear stress
resultants and shear strain energy with those of the equivalent _rst!order shear deformation theory[
This is done without solving the elasticity equilibrium equations with speci_ed boundary and
loading conditions[ Examples are shown for circular and rectangular cross sections\ and the new
shear correction factors are compared with those of Cowper "0855#[
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1[ Warping functions

Here we show how to derive the shear warping and coupling functions of prismatic isotropic
beams from the elasticity solutions of stress distributions[ For an initially straight beam undergoing
deformations in three!dimensional space "see Fig[ 0#\ the displacement _eld can be represented as
"Pai and Nayfeh\ 0883#

u0"x\ y\ z\ t# � u"x\ t#¦zu1"x\ t#−yu2"x\ t#

¦r0"x\ t#`00"y\ z#¦g4"x\ t#`04"y\ z#¦g5"x\ t#`05"y\ z#

u1"x\ y\ z\ t# � v"x\ t#−zu0"x\ t#¦r1"x\ t#`11"y\ z#¦r2"x\ t#`12"y\ z#¦e"x\ t#`13"y\ z#

u2"x\ y\ z\ t# � w"x\ t#¦yu0"x\ t#¦r1"x\ t#`21"y\ z#¦r2"x\ t#`22"y\ z#¦e"x\ t#`23"y\ z# "0#

where u0\ u1 and u2 are the displacement of an arbitrary point on the observed cross section along
the axes\ x\ y and z\ respectively\ and t is time[ Moreover\ u\ v and w are the displacements of the
area centroid of the observed cross section ^ u0\ u1 and u2 are the rotation angles of the cross section ^
and r0\ r1 and r2 are the curvatures with respect to the axes x\ y and z\ respectively[ e is the
extensional strain of the centroidal line[ g4 and g5 are the shear rotation angles at the area centroid
with respect to the axes y and −z\ respectively[ `00 is the torsional warping function ^ `04 and `05

are shear warping functions ^ `11\ `12\ `21 and `22 are bending!induced in!plane warping functions ^
and `13 and `23 are extension!induced in!plane warping functions[

Using oii � 1ui:1xi and oij � 1ui:1xj¦1uj:1xi "x0 0 x\ x1 0 y\ and x2 0 z#\ engineering strains oij

are obtained as

Fig[ 0[ Coordinate system and displacements for an initially straight beam "xyz is a rectangular frame with the x axis
along the beam centroidal line#[
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o00 � e¦zr1−yr2¦r?0`00¦g?4`04¦g?5`05 "1#

o11 � r1`11y¦r2`12y¦e`13y "2#

o22 � r1`21z¦r2`22z¦e`23z "3#

o01 � r0"`00y−z#¦g4`04y¦g5`05y¦r?1`11¦r?2`12¦e?`13 "4#

o02 � r0"`00z¦y#¦g4`04z¦g5`05z¦r?1`21¦r?2`22¦e?`23 "5#

o12 � r1"`11z¦`21y#¦r2"`12z¦`22y#¦e"`13z¦`23y# "6#

where " #? 0 1" #:1x\ e � u?\ u1 � −w?\ u2 � v?\ r0 � u?0\ r1 � u?1\ and r2 � u?2

1[0[ In!plane warpin` functions

To show the method of obtaining analytical in!plane warping functions\ we consider isotropic
beams with a cross section symmetric with respect to the axes y and z[ We also assume that all
loads are applied at the ends and hence r?0 � g?4 � g?5 � e? � 9[ Using the assumption that
s11 � s22 � s12 � 9 in the constitutive equation of isotropic materials yields s00 � Eo00\ o11 � −no00\
o22 � −no00\ and o12 � 9[ Here sij denote engineering stresses\ E is Young|s modulus\ and n is
Poisson|s ratio[ Using these results and eqns "1#Ð"3# and "6#\ we obtain

r1"`11y¦nz#¦r2"`12y−ny#¦e"`13y¦n# � 9 "7#

r1"`21z¦nz#¦r2"`22z−ny#¦e"`23z¦n# � 9 "8#

r1"`11z¦`21y#¦r2"`12z¦`22y#¦e"`13z¦`23y# � 9 "09#

Since r1\ r2 and e are independent of each other\ setting their coe.cients in eqns "7#Ð"09# to zero
yields

`11y¦nz � 9\ `21z¦nz � 9\ `11z¦`21y � 9 "00a\b\c#

`12y−ny � 9\ `22z−ny � 9\ `12z¦`22y � 9 "01a\b\c#

`13y¦n � 9\ `23z¦n � 9\ `13z¦`23y � 9 "02a\b\c#

Moreover\ because the cross section is symmetric with respect to both the y and z axes\ we have

`21"y\ z# � `21"−y\ z#\ `12"y\ z# � `12"y\ −z#\ `23"y\ z# � `23"−y\ z# "03a\b\c#

Integrating eqns "00#Ð"02# and using eqns "03a\b\c\#\ we obtain the in!plane warping functions as

`11 � −nyz\ `12 � 0
1
n"y1−z1#\ `13 � −ny

`21 � 0
1
n"y1−z1#\ `22 � nyz\ `23 � −nz "04#

1[1[ Shear warpin` functions

To show the method of deriving shear warping functions\ we consider a prismatic isotropic
beam with the reference axis x representing the line through the area centroids of the beam[ To
avoid complications arising from bending!torsion coupling\ we assume that the cross section and
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applied static end loads are symmetric with respect to the xÐz plane and hence\ the xÐz plane is
the plane of de~ection and

n � g5 � r2 � u0 � r0 � 9 "05a#

External loads are assumed to be at the ends only\ and hence\

g?4 � e? � 9 "05b#

Substituting eqns "05a\b# into eqns "1#\ "4# and "5# yields

o00 � e¦zr1\ o01 � g4`04y¦r?1`11\ o02 � g4`04z¦r?1`21 "06a\b\c#

The exact distribution of transverse shear stresses in a uniformly loaded beam is the same as in a
tip!loaded cantilever and is given by "Love\ 0833 ^ Muskhelishvili\ 0852#

s02 � −
F2

1"0¦n#I11 0
1x
1z

¦
0
1

nz1¦
0
1
"1−n#y11 "07#

s01 � −
F2

1"0¦n#I11 0
1x
1y

¦"1¦n#yz1 "08#

where x"y\ z# is a harmonic function determined by the shape of the cross section and
I11 0 ÐÐz1 dy dz[ Moreover\ F2 is the shear stress resultant\ which is equal to the end load in the tip!
loaded case and varies linearly in a uniformly!loaded case[ Since eqns "07# and "08# are exact in
the cases of constant and linearly varying F2\ it is expected that eqns "07# and "08# are valid if F2

does not vary too rapidly along the length of the beam[

1[1[0[ Circular cross sections
For a circular cross section with a radius a\ the function x is "Love\ 0833#

x � −0
3
"2¦1n#a1z¦0

3
"z2−2zy1# "19#

Substituting eqn "19# into eqns "07# and "08# yields

s02 �
F2"2¦1n#
7"0¦n#I11 0a1−z1−

0−1n

2¦1n
y11 "10#

s01 � −
F2"0¦1n#
3"0¦n#I11

yz "11#

Since s02=y�z�9 0 Gg4 "G is the shear modulus#\ it follows from eqn "10# that

Gg4 �
F2"2¦1n#
7"0¦n#I11

a1 "12#

It follows from eqn "06a# that the bending moment M1 0 Ðs00z dy dz � ÐEo00z dy dz � EI11r1[
Moreover\ M1 � −F
2"L−x# "L is the beam length# and F2 � F
2 for a cantilever subjected to an
end force F
2\ and M1 � −q"L−x#1:1 and F2 � q"L−x# for a cantilever subjected to a constant
distributed load q[ Hence\ we obtain that
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r?1 �
M?1
EI11

�
F2

EI11

"13#

Substituting eqn "13# into eqn "06c# and using the relations s02 � Go02 and E � 1G"0¦n# and eqns
"10# and "12# yields

F2"2¦1n#
7"0¦v#I11 0a1−z1−

0−1n

2¦1n
y11�

F2"2¦1n#
7"0¦n#I11

a1 0`04z¦
3

"2¦1n#a1
`211 "14#

It follows from eqns "14# and "04# that

`04z � −
y1

"2¦1n#a1
¦0−

2z1

"2¦1n#a1
"15#

and\ hence

`04 � −
y1z

"2¦1n#a1
¦z−

z2

"2¦1n#a1
¦f"y# "16#

Similarly\ substituting eqn "13# into eqn "06b# and using the constitutive equation s01 � Go01 and
eqns "11# and "12# yields

−
F2"0¦1n#
3"0¦n#I11

yz �
F2"2¦1n#
7"0¦n#I11

a1 0`04y¦
3

"2¦1n#a1
`111 "17#

It follows from eqns "17# and "04# that

`04 � −
y1z

"2¦1n#a1
¦`"z# "18#

It follows from eqns "16# and "18# that f"y# � 9 and `"z# � z−z2:"2¦1n#a1[ Hence\ the shear
warping function `04 is given by

`04 � −
y1z

"2¦1n#a1
¦z−

z2

"2¦1n#a1
"29#

It follows from eqns "06b#\ "06c#\ "13#\ "12#\ and "04# that

o02 � `24g4\ `24 � `04z¦
r?1
g4

`21 � 0−
z1

a1
−

0−1n

"2¦1n#a1
y1 "20#

o01 � `14g4\ `14 � `04y¦
r?1
g4

`11 � −
1"0¦1n#

"2¦1n#a1
yz "21#

The shear strain functions `24 and `14 can be directly obtained from eqns "10# and "11# by using
the relations `24 � s02:Gg4 and `14 � s01:Gg4[ If the beam is subjected to shear loads along both y
and z directions\

o02 � `24g4¦`25g5\ o01 � `15g5¦`14g4 "22#
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where the shear strain functions `15 and `25 can be obtained by considering end loads along the y
axis and are given by

`15 � 0−
y1

a1
−

0−1n

"2¦1n#a1
z1\ `25 �

1"0¦1n#

"2¦1n#a1
yz "23#

1[1[1[ Rectan`ular cross sections
For beams having rectangular cross sections "see Fig[ 0#\ the function x is given by "Love\ 0833#

x � 0−
0¦n

3
a1¦

n

01
b11 z¦

1¦n

5
"z2−2zy1#¦

nb2

1p2
s
�

n�0

"−0#n sinh
1npz

b

n2 cosh
npa
b

cos
1npy

b
"24#

Substituting eqn "24# into eqns "07# and "08# yields

s02 �
F2

1"0¦n#I11

K

H

H

H

H

k

"0¦n# 0
a1

3
−z11−

nb1

01
¦ny1−

nb1

p1
s
�

n�0

"−0#n cosh
1npz

b

n1 cosh
npa
b

cos
1npy

b

L

G

G

G

G

l

"25#

s01 �
F2nb

1

1"0¦n#I11p
1

s
�

n�0

"−0#n sinh
1npz

b

n1 cosh
npa
b

sin
1npy

b
"26#

Since s02=y�z�9 � Gg4\ we obtain from eqn "25# that

Gg4 �
F2

1"0¦n#I11

H2\ H2 0
0
3
"0¦n#a1−

0
01

nb1−
nb1

p1
s
�

n�0

"−0#n

n1 cosh
npa
b

"27#

Using the relations `24 � s02:Gg4 and `14 � s01:Gg4\ we obtain the shear strain functions `24 and `14

as

`24 �
0

H2

K

H

H

H

H

k

"0¦n# 0
a1

3
−z11−

nb1

01
¦ny1−

nb1

p1
s
�

n�0

"−0#n cosh
1npz

b

n1 cosh
npa
b

cos
1npy

b

L

G

G

G

G

l

"28#

`14 �
nb1

H2p
1

s
�

n�0

"−0#n sinh
1npz

b

n1 cosh
npa
b

sin
1npy

b
"39#

Similarly\ one can obtain the shear strain function `15 and `25 as
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`15 �
0

H1

K

H

H

H

H

k

"0¦n# 0
b1

3
−y11−

na1

01
¦nz1−

na1

p1
s
�

n�0

"−0#n cosh
1npy

a

n1 cosh
npb
a

cos
1npz

a

L

G

G

G

G

l

"30#

`25 � −
na1

H1p
1

s
�

n�0

"−0#n sinh
1npy

a

n1 cosh
npb
a

sin
1npz

a
"31#

where

H1 0
0
3
"0¦n#b1−

0
01

na1−
na1

p1
s
�

n�0

"−0#n

n1 cosh
npb
a

"32#

2[ Shear correction factors

For isotropic beams the shear stressÐstrain relation is

6
s02

s017� $
G 9

9 G% 6
`24g4¦`25g5

`15g5¦`14g47 "33#

To derive shear correction factors\ we consider the form of eqn "33# and assume that the shear
stress resultants F1 and F2 of an equivalent _rst!order shear deformation theory have the form

6
F2

F17� $
k0GA k2GA

k2GA k1GA% 6
g¹4¦c0g¹5

g¹5¦c1g¹47 "34#

where A is the cross section area ^ k0\ k1 and k2 are shear correction factors ^ g¹4 and g¹5 are energy!
averaged representatives of g4 and g5\ respectively ^ k2 is used to account for any possible coupling
of shear energies ^ c0 accounts for the shear coupling e}ect of g5 on F2 ^ and c1 accounts for the
shear coupling e}ect of g4 on F1[ Hence\ there are seven unknowns "i[e[\ k0\ k1\ k2\ g¹4\ g¹5\ c0\ c1# to
be determined by matching the shear stress resultants F1 and F2 and shear strain energy En of the
exact shear theory with those of the equivalent _rst!order shear theory[

It follows from eqn "33# that

F2 � gA

s02 dy dz � C00g4 "35#

F1 � gA

s01 dy dz � C10g5 "36#
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1En � gA

"s02o02¦s01o01# dy dz � g1
4C20¦1g5g4C21¦g1

5C22 "37#

where

gA

`25 dy dz � gA

`14 dy dz � 9 "38a#

C00 � G gA

`24 dy dz\ C10 � G gA

`15 dy dz\ C20 � G gA

"`1
14¦`1

24# dy dz

C21 � G gA

"`14`15¦`24`25# dy dz\ C22 � G gA

"`1
15¦`1

25# dy dz "38b#

Equation "38a# is due to the fact that ÐA sdA � 9 when the external load F1 and hence\ g5 are zero[
Similarly\ ÐA s02 dA � 9 when F2 and g4 are zero[

It follows from eqn "34# that

F2 � "k0¦c1k2#GAg¹4¦"k2¦c0k0#GAg¹5 "49#

F1 �"k1¦c0k2#GAg¹5¦"k2¦c1k1#GAg¹4 "40#

1En � F2"g¹4¦c0g¹5#¦F1"g¹5¦c1g¹4#

� g¹1
4GA"k0¦1k2c1¦k1c

1
1#¦1g¹5g¹4GAðk0c0¦k2"0¦c0c1#¦k1c1Ł

¦g¹1
5GA"k1¦1k2c0¦k0c

1
0# "41#

Setting the term which contains g4"g5# in eqn "35# equal to the term which contains g¹4"g¹5# in eqn
"49# yields

"k0¦c1k2#GAg¹4 � C00g4 "42#

"k2¦c0k0#GAg¹5 � 9 "43#

Similarly\ it follows from eqns "36# and "40# that

"k1¦c0k2#GAg¹5 � C10g5 "44#

"k2¦c1k1#GAg¹4 � 9 "45#

Also\ we obtain from eqns "37# and "41# that

g¹1
4GA"k0¦1k2c1¦k1c

1
1# � C20g

1
4 "46#

g¹5g¹4GAðk0c0¦k2"0¦c0c1#¦k1c1Ł � C21g5g4 "47#

g¹1
5GA"k1¦1k2c0¦k0c

1
0# � C22g

1
5 "48#

Substituting eqns "42# and "45# into eqn "47# yields

g¹5c0C00 � C21g5 "59#

Substituting eqns "43# and "44# into eqn "48# yields
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g¹5C10 � C22g5 "50#

Substituting eqns "42# and "45# into eqn "46# yields

g¹4C00 � C20g4 "51#

Substituting eqns "43# and "44# into eqn "47# yields

g¹4c1C10 � C21g4 "52#

It follows from eqns "59#Ð"52# that

c0 �
C10C21

C00C22

"53#

c1 �
C21C00

C10C20

"54#

Moreover\ it follows from eqns "51# and "50# that

g4

g¹4

�
C00

C20

"55#

g5

g¹5

�
C10

C22

"56#

Using eqns "42#\ "43#\ "55#\ and "56#\ we obtain the shear correction factors as

k0 �
C1

00

GAC20"0−c0c1#
"57#

k2 �
−c0C

1
00

GAC20"0−c0c1#
"58#

We also obtain from eqns "44#\ "45#\ "55#\ and "56# that

k1 �
C1

10

GAC22"0−c0c1#
"69#

k2 �
−c1C

1
10

GAC22"0−c0c1#
"60#

It can be proved that the k2 in eqn "58# is equal to that in eqn "60# by using eqns "53# and "54#[ It
can be seen from eqns "40# and "45# that F1 � 9 if g¹5 � 9[ However\ eqn "34# shows that\ when
g¹5 � 9\ F1 can be zero only if k2 is nontrivial when both k1 and c1 are nontrivial[

Substituting eqns "43# and "45# into eqn "34# yields

6
F2

F17� $
k¹0GA 9

9 k¹1GA% 6
g¹4

g¹57 "61#

where
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k¹0 0 k0¦c1k2\ k¹1 0 k1¦c0k2 "62#

Substituting eqns "57#Ð"60# into eqn "62# yields

k¹0 �
C1

00

GAC20

\ k¹1 �
C1

10

GAC22

"63#

The geometric averages of the shear angles are de_ned as g½4 0 ÐA o02 dA:A and g½5 0 ÐA o01 dA:A[ It
follows from eqns "22#\ "38a\b#\ "55#\ "56#\ and "63# that

g½4 �
C00g4

GA
� k¹0g¹4\ g½5 �

C10g5

GA
� k¹1g¹5 "64a#

Hence\ eqn "61# can be rewritten as

6
F2

F17� $
GA 9

9 GA% 6
g½4

g½57 "64b#

Moreover\ if F1 � 9 and hence g¹5 � 9\ it follows from eqn "41# that

1En � F2g¹4 � GAg½4g¹4 � GAg½4g½4 � GAg¹4g¹4 "65#

Equation "65# shows that g¹4 represents the energy average of o02[ Moreover\ eqn "64a# shows that
the shear correction factor k¹ 0 represents the ratio of the geometric average to the energy average
of o02[

The in~uence of shear warpings on the axial strain o00 is not included in the matching of strain
energies[ However\ if F1 and F2 are constant\ then g?4 � g?5 � 9 and the shear strain energy is
decoupled from the axial strain energy[ Also\ we note that kinetic energy is not considered in the
matching[ Since kinetic energy is a function of u\ v\ and w as well as g4 and g5\ the system responses
would need to be obtained before the kinetic energies can be matched[ This is generally not
practical and the results are problem dependent[ However\ since the kinetic energy due to shear
warping is relatively small\ using the shear correcting factors obtained by matching only the shear
strain energy should not signi_cantly reduce accuracy[ The warping!restraint e}ect can a}ect the
shear warping functions at the ends of a beam if the load distributions on the ends are not the
same as those of St Venant|s solutions "Iesan\ 0876#[ However\ the warping restraint e}ect is not
signi_cant for isotropic beams and is neglected here[

Because shear stress resultants and energy are matched\ the corresponding _rst!order shear
theory is energy!consistent[ To use this energy!consistent _rst!order shear theory in solving struc!
tural problems\ one needs to de_ned coupled energy!averaged shear rotation angles g¼4 and g¼5 ðsee
eqn "34#Ł

g¼4 0 g¹4¦c0g¹5\ g¼5 0 g¹5¦c1g¹4 "66a#

Then\ the equivalent displacement _eld for ~exural problems is

u0 � −w?z¦g¼4z−v?y¦g¼5y\ u1 � v\ u2 � w "66b#

Using eqns "66a# and "66b# to derive the _rst!order shear!deformable beam theory and then solving
the governing equations with speci_ed boundary and loading conditions\ one can obtain the
solutions of v\ w\ g¹4 and g¹5[ After the values of g¹4 and g¹5 are obtained\ one can use eqns "55# and
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"56# to obtain g4 and g5\ and then eqns "22# and "33# to obtain the transverse shear strains
and stresses[ After the system responses are obtained by using the equivalent _rst!order shear
deformation theory\ if greater accuracy is required\ post!processing techniques "Whitney\ 0876 ^
Noor and Burton\ 0878# can improve the solution by solving the three!dimensional elasticity
equations[

3[ Energy!consistent formulation

3[0[ Planar ~exural vibrations

We assume that the cross section and applied dynamic loads are symmetric with respect to the
xÐy plane and that the axis z is a principal axis[ Hence\ because of the loading condition\
F1 � g5 � g¹5 � 9[ To derive the equations of motion\ we consider eqns "66a\b# and rewrite the
displacement _eld as

u0 � −zw?¦zg¹4\ u2 � w\ u1 � 9 "67#

The strainÐdisplacement relations are

o00 �
1u0

1x
� −zwý¦zg¹?4\ o02 �

1u0

1z
¦

1u2

1x
� g¹4\ o01 � 9 "68#

To derive the equations of motion\ we use the extended Hamilton principle\ which states

9 � g
t

9

"dT−dV¦dWnc¦dWb# dt "79#

where T is the kinetic energy\ V is the elastic energy\ dWnc is the variation of nonconservative
energy due to external loads and damping\ and dWb is the variation of work due to forced applied
at the boundary or due to motion of the boundary[ Since dWb is problem dependent\ it will not be
considered in the derivation[ Using the assumptions s11 � s22 � s12 � 9\ we obtain that

dWnc � g
L

9

q2dw dx "70a#

dV � g
L

9 gA

"s00do00¦s01do01¦s02do02# dA dx "70b#

dT � −g
L

9 gA

rDÝ = dD dA dx "70c#

where q2 is the external distributed load\ r is the mass density\ and D is the displacement vector
given by

D � u0ix¦u1iy¦u2iz �"−zw?¦zg¹4#ix¦wiz "71#

It follows from eqns "70c# and "71# that
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dT � −g
L

9

"ðmw�¦j1"g¹�?4−w� ý#Łdw¦j1"g¹�4−w� ?#dg¹4# dx¦j1"g¹�4−w� ?#dw=L9 "72#

where

m 0 gA

r dA\ j1 0 gA

rz1 dA "73#

Substituting eqn "68# into eqn "70b#\ we obtain

dV � g
L

9

ð−Mý1dw¦"F2−M?1#dg¹4Ł dx¦ð−M1dw?¦M?1dw¦M1dg¹4ŁL9 "74#

where

M1 0 gA

s00z dA � EI11"g¹?4−wý# "75#

Substituting eqns "70a#\ "72#\ "74#\ "75#\ and "61# into eqn "79# and setting the coe.cients of dw
and dg¹4 to zero\ we obtain the following equations of motion ]

EI11"g¹41−wiv#¦q2 � mw�¦j1"g¹�?4−w� ý# "76a#

EI11"g¹ý4−w1#−k¹0GAg¹4 � j1"g¹�4−w� ?# "76b#

The boundary conditions are to specify

w or −M?1¦j1"g¹�4−w� ?#^ w? or M1^ g¹4 or M1 "77#

at x � 9\ L[ In the literature\ most authors use the total rotation angle c1 of the observed cross
section in the formulation of Timoshenko|s beam theory\ which is de_ned as

c1 � g¹4−w? "78#

Substituting eqn "76b# into eqn "76a# and using eqn "78# in eqns "76a\b#\ we obtain that

k¹0GA"wý¦c?1#¦q2 � mw� "89a#

EI11cý1−k¹0GA"w?¦c1# � j1c� 1 "89b#

We note that eqns "89a\b# are the same as those of Timoshenko|s beam theory except that c1

represents the energy!averaged rotation angle and the shear correction factor k¹ 0 accounts for both
the shear stress resultant and energy[ Because either eqns "76a# and "76b# or eqns "89a# and "89b#
are coupled equations\ they need to be solved simultaneously[ Moreover\ although di}erent
dependent variables are used "i[e[\ w vs g¹4 and w vs c1#\ eqns "76a\b# and eqns "89a\b# describe the
same dynamic system\ and their solutions are equivalent[ Hence\ these two formulations are
equivalent[
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3[1[ Three!dimensional ~exural vibrations

We consider a prismatic homogeneous isotropic beam with the reference axis x being the
centroidal line and the axis y and z being the principal axes[ The displacement _eld is shown in
eqn "66b#[ The strainÐdisplacement relations are obtained as

o00 � −zwý¦zg¼?4−yvý¦yg¼?5\ o01 � g¼5\ o02 � g¼4 "80#

The virtual work due to external loads is

dWnc � g
L

9

"q1dv¦q2dw# dx "81#

where q1 is the external distributed load along the y!direction\ and q2 is the external distributed
load along the z!direction\ and the displacement vector is given by

D � u0ix¦u1iy¦u2iz �"−w?z¦g¼4z−v?y¦g¼5y#ix¦viy¦wiz "82#

It follows from eqns "70c# and "82# that

dT � −g
L

9

"ðmw�¦j1"g¼�?4−w� ý#Łdw¦ð j1"g¼�4−w� ?#¦c1j2"g¼�5−v�?#Łdg¹4

¦ðmv�¦j2"g¼�?5−v�ý#Łdv¦ð j2"g¼�5−v�?#¦c0j1"g¼�4−w� ?#Łdg¹5# dx

¦ð j1"g¼�4−w� ?#dw¦j2"g¼�5−v�?#dvŁL9 "83#

where

m 0 gA

r dA\ j1 0 gA

rz1 dA\ j2 0 gA

ry1 dA\ gA

ryz dA � 9 "84#

Substituting eqn "80# into eqn "70b#\ we obtain

dV � g
L

9

"−Mý1dw¦Mý2dv¦ðF2−M?1¦c1"F1¦M?2#Łdg¹4¦ðF1¦M?2¦c0"F2−M?1#Łdg¹5# dx

¦ð−M1dw?¦M?1dw¦M2dv?−M?2dv¦"M1−c1M2#dg¹4−"M2−c0M1#dg¹5ŁL9 "85#

where

M1 0 gA

s00z dA � EI11"g¼?4−wý#\ M 0 −gA

s00y dA � EI22"vý−g¼?5#

I11 � gA

z1 dA\ I22 � gA

y1 dA "86#

Substituting eqns "81#\ "83#\ and "85# into eqn "79#\ using eqn "86#\ and setting the coe.cients of
dw\ dv\ dg¹4\ and dg¹5 to zero\ we obtain the following equations of motion ]

EI11"g¼41−wiv#¦q2 � mw�¦j1"g¼�?4−w� ý# "87a#
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EI22"g¼51−viv#¦q1 � mv�¦j2"g¼�?5−v�ý# "87b#

EI11"g¼ý4−w1#−k¹0GAg¹4¦c1EI22"g¼ý5−v1#−c1k¹1GAg¹5 � j1"g¼�4−w� ?#¦c1j2"g¼�5−v�?# "87c#

EI22"g¼ý5−v1#−k¹1GAg¹5¦c0EI11"g¼ý4−w1#−c0k¹0GAg¹4 � j2"g¼�5−v�?#¦c0j1"g¼�4−w� ?# "87d#

The boundary conditions are to specify

w or −M?1¦j1"g¼�4−w� ?#

w? or M1

v or M?2¦j2"g¼�5−v�?#

v? or M2

g¹4 or M1−c1M2

g¹5 or M2−c0M1 "88#

at x � 9\ L[ Subtracting c1×eqn "87d# from eqn "87c# and subtracting c0×eqn "87c# from eqn
"87d# yields

EI11"g¼ý4−w1#−k¹0GAg¹4 � j1"g¼�4−w� ?# "099a#

EI22"g¼ý5−v1#−k¹1GAg¹5 � j2"g¼�5−v�?# "099b#

We note that\ when g¹5 � 9\ eqn "87a# and eqn "099a# reduce to eqn "76a# and eqn "76b#\ respectively[
However\ when both g¹4 and g¹5 are nontrivial\ c0 and c1 couple the equations governing motion in
the two planes[

4[ Numerical results and discussion

4[0[ Circular cross section

Substituting eqns "20#\ "21# and "23# into eqn "38b#\ we obtain

C00 � C10 � GA
1"0¦n#
2¦1n

\ C20 � C22 � GA
17¦45n¦21n1

5"2¦1n#1
\ C21 � 9 "090#

where A � a1p[ Substituting eqn "090# into eqns "53#Ð"56#\ "62#\ and "63# yields

c0 � c1 � k2 � 9 "091a#

g4

g¹4

�
g5

g¹5

�
2"0¦n#"2¦1n#

6¦03n¦7n1
"091b#

k¹0 � k¹1 � k0 � k1 �
5"0¦n#1

6¦03n¦7n1
"091c#
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The shear correction factor k0 is the same as that of Cowper "0855# "kCowper � 5"0¦n#:"6¦5n##
only if n � 9[ If n � 9[2\ kCowper is higher than k0 by 3[1)[ If n � 9[4\ kCowper is higher than k0 by
5[6)[

4[1[ Rectan`ular cross section

Substituting eqns "28# and "39# into eqn "38b# we obtain

C00 �
GA
H2

a1"0¦n#
5

\ C21 � 9\ C20 �
GA

H1
2 0

a3"0¦n#1

29
¦

n1b3

079
−

n1b4

1p4a
s
�

n�0

tanh npa:b

n4 1
"092#

where A � ab[ Substituting eqn "092# into eqns "53#Ð"56# and "63# yields

c0 � c1 � k2 � 9\ k¹0 � k0 �
a3"0¦n#1

250
a3"0¦n#1

29
¦

n1b3

079
−

n1b4

1p4a
s
�

n�0

tanh npa:b

n4 1
"093#

It is well known in the analysis of isotropic plates that the shear strain functions are given by
"Shames and Dym\ 0874#

`24 � 0−
3z1

a1
\ `14 � 9 "094#

This is the so!called third!order shear deformation theory[ Using eqn "094# we obtain

C00 �
1GA

2
\ C20 �

7GA
04

\ k¹0 � k0 �
4
5

"095#

If n � 9 and:or b:a ¹ 9\ it follows from eqn "093# that k0 � 4:5[ On the other hand\ if n � 9 and:or
b:a ¹ 9\ it follows from eqns "28# and "39# that `24 and `14 are the same as those in eqn "094#[ In
other words\ neglecting Poisson|s e}ect "i[e[\ n � 9# and:or assuming b:a ¹ 9 validates the third!
order shear theory[ The shear correction factor k0 in eqn "093# is the same as that of Cowper
"0855# "kCowper � 09"0¦n#:"01¦00n## only if n � 9[ However\ kCowper is independent of a:b\ but
eqn "093# shows that k0 is a function of a:b and that k0 decreases when a:b decreases[ For materials
with n � 9[2\ Table 0 shows the comparison[ The reason for this is that\ when a:b decreases and
the beam is subjected to F2 only\ s01 increases ðsee eqn "26#Ł due to Poisson|s e}ect and the
assumption that s11 � 9[ Hence\ the energy averaged shear rotation angle g¹4 and g¹4:g¹4 "�0:k¹ 0#
increase[ In fact\ the shear correction factor of Cowper "0855# for elliptical cross sections also
shows this phenomenon[ Note that the shear correction factor of a rectangular cross section should
be similar to that of an elliptical one when the aspect ratio a:b is very small[ However\ we point
out here that\ when a:b is small\ the assumption s11 � 9 is not valid and hence\ the shear correction
factor ðeqn "093#Ł and the shear stress functions ði[e[\ eqns "25# and "26#Ł are not appropriate
because they are derived using the assumption s11 � 9[ Hence\ if a:b is very small\ it is better to
obtain k0 by assuming s01 � `14 � 9[ Table 0 shows that k0"s01 �`14 �9# is larger than that from eqn
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Table 0
Shear correction factors for beams having rectangular cross
sections and n � 9[2

a:b k0 k0"s01�`14�9# kCowper

09 4:5 4:5 9[73856
3 9[72220 9[72220 9[73856
1 9[72183 9[72187 9[73856
0 9[71711 9[71829 9[73856
9[4 9[67333 9[79565 9[73856
9[14 9[47269 9[63656 9[73856
9[0 9[06802 9[59876 9[73856

"093# and is less than kCowper[ However\ to obtain accurate results\ one should treat beams with
very small a:b as plates[

4[2[ Discussion

The shear correction factor de_ned in this paper is more rigorous than others in the literature
because both shear stress resultants and shear strain energy are conserved[ The physical meaning
of shear correction factor is shown to be the ratio of the geometric average to the energy average
of shear strain ðeqn "64a#Ł\ not the ratio of the geometric average of the shear strain to the shear
rotation angle at the centroid as explained in some of the literature[ Moreover\ if the geometric
average is used as the shear representative and only shear stress resultants are matched\ the shear
correction factor should be one\ as shown in eqn "64b#[ The present shear correction factor is
di}erent from that of Cowper "0855# because the geometric average of the shear strain is used by
Cowper as the shear representative and eqn "70b# is not satis_ed[ In other words\ the formulation
of Cowper "0855# is not energy!consistent[

A combination of the present method of deriving shear warping functions from elasticity
solutions and the new derivation of shear correction factor can be used to obtain energy!consistent
shear correction factors[ Since the range of validity of the _rst!order shear theory is strongly
dependent on the shear correction factors used\ the present shear correction factor can be used to
extend the validity of the _rst!order shear theory in analyzing thick beams[ These shear correction
factors are useful in _nite!element formulations to simplify the formulation but still accurately
account for shear e}ects[

For asymmetric cross sections or symmetric anisotropic cross sections\ the in!plane warping
functions in eqn "04# are not valid[ To obtain the warping functions and shear strain functions `14\
`15\ `24 and `25 of such complex cross sections\ one needs to perform two!dimensional sectional
_nite!element analyses "see\ e[g[\ Giavotto et al[\ 0872# to obtain the shear stress distributions s02

and s01 and then use the present method to obtain k0 and k1[ However\ the presented exact warping
functions for circular and rectangular isotropic cross sections can be used to check the accuracy
of a two!dimensional sectional analysis code for analyzing general anisotropic beams[
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5[ Closure

A method of deriving exact shear warping functions of isotropic beams from elasticity solutions
is shown in this paper[ Moreover\ a new derivation of shear correction factors is shown\ in which
the shear stress resultants and shear strain energy are conserved[ The new shear correction factor
is energy!consistent and its physical meaning is shown[ The present shear correction factor is useful
in _nite!element formulations to simplify the formulation but still accurately account for transverse
shear e}ects[ The use of the energy!averaged shear representative in the derivation of Timoshenko|s
beam theory for planar and three!dimensional vibrations is also shown in detail[
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